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Abstract.  
The dynamics of the major disruption of DIII-D discharge 87009 are investigated with the NIMROD code 
[1].  To explore the time dynamics in a computationally-efficient manner, a fixed-boundary equilibrium is 
used to model the physics of a plasma being heated through an ideal magnetohydrodynamic (MHD) 
instability threshold. This simulation shows a faster than exponential increase in magnetic energy as 
predicted by analytic theory [2]. The dynamics of the heat flux loading on the divertor surfaces is explored 
with an equilibrium that has the plasma beta raised 8.7% above the best equilibrium reconstruction to start 
above the ideal MHD threshold. The nonlinear evolution of the ideal mode leads to a stochastic magnetic 
field and parallel heat transport leads to a localization of the heat flux that is deposited on the wall. The 
structure of the heat flux deposition is dependent upon the magnetic topology that results from the growth 
of the ideal mode. 
 
 
I. INTRODUCTION 
 
During tokamak experimental operation, events that rapidly terminate the plasma 
discharge occasionally occur. The complete and rapid loss of thermal and magnetic 
energy in these disruptions results in large thermal and magnetic loads on the material 
wall. For proposed next step experiments such as the International Thermonuclear 
Experimental Reactor (ITER), the stored energy will be approximately 100 times greater 
than present day devices [3] greatly increasing the potential damage of these events. 
Exacerbating the risk to the machine and increasing the engineering challenges, the 
disruption phenomena are often highly non-axisymmetric [4]; this results in localized 
deposition of the heat loads. Understanding the onset mechanisms and the nonlinear 
dynamics leading to the disruption is crucial for understanding ways to prevent or 
mitigate disruptions. 
 
Disruptions are generally placed in one of two categories depending on the sequence of 
events that occur [4].  In major disruptions, the thermal energy is lost first in the thermal 
quench phase. The current density profile flattens, and the resultant change in the internal 
inductance causes the total plasma current to increase. A current quench from the cold 
plasma then occurs. These types of disruptions are generally caused by long wavelength, 
non-axisymmetric magnetohydrodynamic (MHD) instabilities.  Because the thermal 
quench generally occurs first, the heat flux normal to the material wall surface is of 
primary concern for understanding the implication of major disruptions in burning 
plasma experiments; in particular, greater understanding of the localization of heat flux as 
observed in divertor temperature measurements, and of how the point of maximum heat 
flux moves away from the original strike points is needed. In the other type of disruption, 
the vertical displacement event (VDE), the plasma becomes unstable to an axisymmetric 
instability and the plasma moves vertically to strike the material wall.  A thermal quench 



occurs followed by a current quench without an increase in the current.  In general, 
simulations of major disruptions are more difficult because the initial motion of the VDE 
is axisymmetric, reducing the toroidal resolution required. 
 
The experimental phenomenology of the major disruption in DIII-D discharge 87009 has 
attracted a great deal of experimental and theoretical interest [2,5-9]. A combination of 
analytic theory [2] and linear ideal MHD code analysis [5] has been successful in 
predicting both the time scale of the disruption [2] and the spatial structure [5] of the 
mode. The success of the model and the indication that the phenomenology can be 
described strictly with a magnetohydrodynamic model makes this an attractive case to 
study with the NIMROD [1] nonlinear initial-value code. Unlike the simple 
analytic/linear numerical MHD model, an initial-value code allows for detailed studies of 
the mechanism leading to the loss of plasma confinement and the resultant heat 
deposition on the plasma wall.  
 
In this paper, two different aspects of the dynamics of the major disruption in DIII-D 
discharge 87009 are explored using the NIMROD code.  Before discussing the 
simulations, a detailed discussion of the model including its strengths and limitations is 
presented. In the first set of simulations, the time dynamics are investigated using fixed-
boundary equilibria.   In the next section, the NIMROD simulation starts from a free-
boundary equilibrium that is above the ideal MHD threshold. The emphasis in this 
simulation is to model how the heat flux gets deposited on the wall. In the final section, 
conclusions are drawn and further work is discussed. 
 
 
II. SIMULATION MODEL 
 
The fluid equations used in these studies are evolution equations for density, n, flow, V, 
current, J, and ion and electron temperature, Ti and Te:  
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where E and B are the electric and magnetic fields; η, ν, and χ are the electric, kinetic, 
and thermal diffusivities respectively; and Q is a heat source. In Eq. (3), the Ohmic and 
stress-tensor heating terms have been neglected because our simulation times are much 
less than the transport time scales.  These equations, in conjunction with Maxwell’s 
equations, are closed because the closures have been specified for the stress tensors, ∏, 
and the conductive heat flows, q. Specifically, ∏i=nν V and ∏e=0 are used for the ion 



and electron stress tensors, and a simplified model of the Braginskii heat flux is used for 
the heat flux closure: 

q = − n κ|| bb · T − n κ⊥ ⊥T (6) 
The rapid equilibration of temperature along field lines is modeled by having κ|| >> κ⊥. 
 
The resistive MHD equations neglect the whistler, Hall, and electron inertia terms – the 
two-fluid physics – in the generalized Ohm’s law (Eq. (4)).  As discussed in Section IV, 
the thermal quench of the plasma disruption is caused by a rapid stochasticization of the 
magnetic field.  The change in the topology of the magnetic field is a result of magnetic 
reconnection that is known to be sensitive to the model used in the generalized Ohm’s 
law [10] with two-fluid physics generally giving faster reconnection than resistive MHD. 
Resolving the length scales necessary in a two-fluid model over the entire plasma region 
as the magnetic field becomes stochastic presents a large numerical challenge.  The 
successful application of linear MHD codes to analyze the experimental results [5] gives 
confidence that intuitive insight into the dynamics can be gained with the nonlinear, 
resistive MHD model. 
 
To minimize the interactions of the hot plasma with the cold wall, modern tokamaks 
divide the plasma into two distinct regions, as seen Fig. 1: a core region where field lines 
close upon themselves and confine the plasma (Te ≈10 keV, n≈1019 in DIII-D), and a 
“halo” region where the field lines intersect the wall and the plasma remains cold (Te ≈1-
10 eV, n≈1016 in DIII-D). Using a Spitzer resistivity (η~T-3/2) in the halo region gives 
large values that suppreses currents.  The separatrix that divides the two regions is only 
clearly defined with two-dimensional magnetic fields – with three-dimensional magnetic 
fields there is, in general, a stochastic region that blurs the separation and increases the 
modeling difficulty. To avoid the numerical difficulties associated with the large three-
dimensional gradients, the majority of magnetohydrodynamic simulations in tokamaks 
have placed the conducting wall on the last-closed flux surface.  These fixed-boundary 
simulations have the added advantage that inverse Grad-Shafranov solvers [11] can be 
used to give highly accurate, easily specified equilibria.  A prominent example of a fixed-
boundary major disruption simulation showing a thermal quench is the kink-ballooning 
simulation of Park [12].  
 
Free-boundary simulations, which have the computational boundary beyond the last-
closed flux surface, have primarily been used for VDE disruptions [13, 14] or studies of 
liquid walls [15], where the dominant axisymmetric nature of the instability gives weak 
stochasticity (or none if only the n=0 component is kept).  For more non-axisymmetric 
modes, accurate modeling of rapid parallel equilibration in three dimensions is required 
to resolve the distinction between the halo region and core region as the plasma evolves 
nonlinearly and becomes highly stochastic.   The use of high-order finite elements in 
NIMROD [1] has allowed numerical simulations of ratios of κ||/κ⊥ never before possible, 
with the simulations presented below being run at κ||/κ⊥=108.  This new capability allows 
accurate free-boundary simulations of major disruptions to be computationally feasible. 
In the simulations below, fixed-boundary simulations are used to explore the time 
dynamics because accurate control of the equilibrium is needed, and the computational 
savings allow for longer time scales to be studied.  Free-boundary simulations are used to 



explore the spatial dynamics; in particular, the dynamics of the thermal quench and how 
heat gets deposited on the material wall.  
 
 
III. Temporal Dynamics  
 
Long wavelength instabilities in fusion plasmas have often been described within the 
framework of magnetohydrodynamic (MHD) theory. These instabilities are often 
categorized by the physics in the generalized Ohm’s law required for the instability to be 
described (e.g. ideal, resistive, neoclassical). The types of instabilities have different time 
scales associated with their growth, with the ideal modes growing on the Alfvènic time 
scale, and the other modes having a time scale that is a hybrid of the Alfvènic and 
resistive time scales. In addition to the time-scales of the mode growth, the marginal 
stability point as calculated by linear eigenvalue codes is frequently used to determine the 
type of mode in theory-experimental comparisons [5].  
 
However, this traditional type of analysis neglects how the plasma reached an unstable 
equilibrium.  Recently, an analytic theory [2] has been put forth to describe the growth of 
an instability being driven through the marginal stability point. Assuming that the free 
energy of the mode is proportional to internal energy as measured by β,  
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Assuming a slow heating rate so that the heating may be approximated as a linear 
increase in β with a heating rate γh near the marginal point, β(t) = βcrit(1+ γht), one obtains 
a growth rate that depends on the heating rate with the resultant mode growing faster than 
exponential: 
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The time constant of the mode is a hybrid of the variation of the growth rate with beta 
and the heating time scale: 
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As the limit of either γ’
MHD or γh goes to zero, the mode does not grow because it is exactly 

at the marginal point.  
 
This heuristic analytic theory was successfully used to explain many of the features of 
DIII-D discharge 87009 which disrupted during neutral-beam heating [2], including the 
time-scale that was deemed to be too slow for an ideal mode. An interesting part of this 
derivation is the use of linear theory to model what experimentalists observe to be in the 
nonlinear regime. To further test this theory and gain additional insight into the nonlinear 
behavior, discharge 87009 was modeled using the nonlinear resistive MHD equations 
with anisotropic heat conduction with an equilibrium with similar pressure and safety 
factor profiles as the actual discharge at 1681.7 msec.  
 



Before running a self-consistent nonlinear simulation with heating, it is necessary to 
begin the simulation near the ideal marginal stability point. Because having a conducting 
wall placed on the last closed flux is stabilizing, the plasma pressure was raised to the 
ideal marginal stability point by self-similarly increasing the plasma pressure profile. To 
determine the critical beta with sufficient accuracy, the equilibrium was varied from 
βN=4.0 to βN=5.0 in increments of  βN=0.05. Because linear calculations with NIMROD 
take much longer than DCON to determine ideal stability, using DCON on a large 
number of equilibria is generally preferred. The ideal linear stability of the equilibria was 
tested with DCON [16] to determine plasma stability to ideal modes using a generalized 
version of Newcomb’s criterion [17]. The ideal marginal stability point was found by 
DCON to be βN=4.45. Linear NIMROD simulations found resistive interchange modes at 
βN=4.0, and the extremely robust growth rates expected of ideal instabilities at βN=5.0 
and βN=6.0 as shown in Fig. 2. Because the growth of the mode at βN=4.45 is very slow, 
we consider it to be computationally stable with regards to ideal instabilities and βN =4.70 
was chosen as the starting point for the calculations.  
 
To model the heating of the plasma, we apply a heating source that increases the 
equilibrium pressure self-similarly  
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As the plasma heats, the flux surfaces shift outward, but the heating is still be peaked at 
the old magnetic axis. Because our heating rate is slow compared to the growth of the 
mode, but still much faster than the resistive decay time (γ’

MHD >> γh >> τR), the 
assumptions of the analytic theory [2] are satisfied. Note that throughout the simulations, 
NIMROD’s finite-element grid is aligned to the equilibrium magnetic field and does not 
move.  
 
The NIMROD simulations were run with Lundquist number, S=106, Prandtl number 
(ratio of normalized resistivity to kinematic viscosity) Pr=200 with heating rates of 
γh=10−2

 s-1 and γh=10−3
 s-1. A finite-element grid in the poloidal plane with 128 radial 

vertexes and 64 poloidal vertexes was used with cubic polynomial Lagrangian elements 
[1]. The toroidal direction is discretized with a pseudo-spectral method using the n = 0 
and n = 1 modes. Because the vacuum region is not included in these simulations, the 
increase in beta to make the n=1 mode unstable results in the higher n modes to be 
substantially destabilized. Because two-fluid effects stabilize these modes but introduce a 
substantial time step limitation due to the dispersive Whistler wave, only the first two 
modes are kept. Our results are only qualitatively correct in the fully nonlinear regime, 
but the goal is to compare with the quasi-linear analytic theory. The results of a 
NIMROD simulations with γh = 10−3

 s-1
 are shown in Fig. 3. As predicted by the analytic 

theory, the growth of the mode is faster than exponential. The growths satisfy Eq. (2) 
well into the nonlinear regime as represented by the straight lines in the fitting shown in 
Fig. 4. Using the slopes of the lines in Fig. 4 to determine the time constant for each 
heating rate gives a fit to the time constant of 
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which agrees well with the analytic prediction given by Eq. (3).  



 
In doubly-periodic geometry, any non-axisymmetric magnetic harmonic that has a 
component of the magnetic field perpendicular to the axisymmetric flux surfaces at the 
harmonic’s rational surface causes a change in topology. Perturbations that satisfy 
Bmn·n≠0, where n is the normal vector at the q=m/n rational surface, break topology and 
are termed “tearing-parity” modes and modes that have zero resonant normal components 
are termed “interchange-parity” modes [18]. Due to the frozen flux theorem, ideal 
instabilities necessarily are interchange-parity modes. As ideal instabilities grow in 
amplitude, they distort the flux surfaces, but do not cause confinement degradation 
because the topology is unchanged. In Fig. 5, the normal components of the dominant 
harmonics are plotted along with the safety factor for time t = 0.217 msec. The harmonics 
are calculated with reference to the new flux surfaces that have shifted due to the heating 
of the plasma (the magnetic axis has shifted 2 cm at this time). The safety factor profile is 
the same (within numerical accuracy) as the equilibrium profile, which is consistent with 
no reconnection and the slow heating assumption of the flux-conserving tokamak [19]. At 
this time, the n = 1 perturbation is approximately 2 orders of magnitude smaller than the 
equilibrium toroidal field thus in the nonlinear regime. Even in the nonlinear regime, the 
harmonics have similar structure as the linear eigenfunctions, only scaled to larger 
amplitudes, explaining the good agreement of the linear ideal MHD eigenfunctions and 
experimental data [5] even though the experiment is in the nonlinear regime.  
 
 
IV. Dynamics of heat transport  
 
To understand how a large, nonlinear ideal perturbation can lead to a thermal quench, 
free-boundary simulations were performed by initiating from an equilibrium based on the 
best equilibrium reconstruction at 1675 ms. Because starting below the critical ideal 
MHD threshold add computational cost to an already expensive calculation, equilibrium 
pressure was raised self-consistently by 8.7% above the best equilibrium reconstruction 
to place the plasma beta above the ideal MHD threshold. The plasma equilibrium and a 
cross-sectional plot of the plasma is shown in Fig. 1.  
 
The simulations presented were run with a temperature dependent resistivity normalized 
such that the Lundquist number in the core plasma was S = 105. A ratio of κ||/κ⊥=108 was 
held constant throughout the computational domain. The use of constant coefficients 
results in the parallel conductivity being underestimated in the core region and 
overestimated in the halo region, but greatly simplifies analysis of the complex dynamics. 
The boundary conditions are applied at the vacuum vessel (modeled as a perfectly 
conducting wall), and not the first material wall, as seen in Fig. 1. The normal component 
of the magnetic field is held constant at the conducting surface. For the density, velocity, 
and temperature, the boundary conditions are also applied at the vacuum vessel instead of 
the more physical limiter surface. This is done for two reasons: 1) applying the “natural 
boundary conditions” at the limiter would give no density flux across the limiter, which is 
less physical than our current method of applying the natural boundary conditions at the 
vacuum vessel and allowing a mass flux across the limiter; 2) On the time scales of the 
mode growth and nonlinear evolution, impurities would not have time to penetrate into 



the plasma. Thus, complicated plasma-wall interactions are unimportant for this 
simulation.  
 
In Fig. 6, the global parameters of internal energy and plasma current from the NIMROD 
simulation are shown. The plasma energy decreases by two-thirds in approximately 200 
microseconds, in qualitative agreement with the experiment. As the internal inductance 
changes due to the reconnection processes, the plasma current increases as is also 
observed in the energy confinement. To explain the processes leading to the loss of 
energy confinement, a series of visualizations is presented.  A complete time history of 
the entire discharge may be found in Reference 20. In Fig. 7, the initial starting point of 
the NIMROD simulation is shown. The temperature isosurfaces show a reversed 
temperature profile due to the peaked pressure profile and broader density profile. The 
magnetic field line plotted is colored according to the temperature with the brightness of 
the nodes indicating the distance along the field line. Finally, the DIII-D limiter wall, 
corresponding to the axisymmetric version of the limiter shown in Fig. 1, is shown with 
the heat flux contours shown. At this early point in time, the heat flux is small and cannot 
be seen.  
 
As the temperature evolves, the first notable macroscopic feature in the temperature 
isosurfaces is the appearance of a 2/1 island (Fig. 8), which occurs at 505 microseconds 
from the beginning of the simulation. As seen in the Poincare surface of section in Fig. 8, 
at this time step there are two 2/1 rational islands, a large 3/1 island, and the edge is 
stochastic.  As can be seen from the safety factor profile in Fig. 1, two 2/1 rational 
surfaces exist with the outer surface having lower shear. The temperature only shows the 
inner 2/1 island because of the competition of the parallel and perpendicular heat 
conduction near rational surfaces [21]. The scale length of this equilibration competition 
increases with decreasing shear.   We note that more conventional DIII-D shear profiles 
have an equilibration length scale of 4 cm for κ||/κ⊥=108 [1].  The fact that the edge went 
stochastic first is a generic feature of the magnetic nulls at the X-point.  Because the 
pressure profile is a peaked L-mode profile (Fig. 1), little stored energy is lost in this 
phase of the disruption.  
 
As the islands grow and overlap, the core becomes stochastic as well.  At 546 
microseconds into the simulation, the core region is largely stochastic as shown in Fig. 9. 
The field line, which was started at the same location as in Fig. 8, is more volume filling; 
however, it is confined and does not strike the wall. The heat flux on the limiter is 
increasing as evidenced by the contour plot on the limiter wall. At this time, 96% of the 
internal energy is still contained by the plasma. 
 
At time of maximum normal heat flux on the material wall (t-t0=639 microseconds), the 
heat flux is localized toroidally and poloidally as seen in Fig. 10. At this point in time, 
87% of the internal energy is still confined.  Because the time of maximum heat flux on 
the wall occurs well after the core has become stochastic, and because it is of greatest 
interest for an engineering point of view, a more complete investigation of the heat 
transport at this time is presented.   
 



In Fig. 11, the isosurfaces corresponding to 47% of the peak value of the magnitude of 
the perpendicular heat flux is shown (because |q⊥|2=-κ⊥q⊥• T this can also be viewed a 
measure of the perpendicular heat flux flowing through a temperature isosurface).  As 
seen in the figure, a large amount of heat transport is on the inboard side and in the core.  
In addition, two small isosurfaces are located farther out on the outboard side as shown in 
the lower part of the figure.  This particular value of heat flux magnitude was chosen for 
visualization because it is the first time an isosurface appears this far out on the outboard 
mid-plane.  All larger magnitudes of heat flux occur in the core region.  Four field lines 
are initialized near this location as shown in the inset of Fig. 11.  In Fig. 12, the integrated 
field lines are shown with the color denoting the total length of the field lines.  The red 
field line, which was initialized from a point inside of the isosurfaces, is confined 
completely within the plasma, and the blue field lines strike both the top and bottom 
divertors.  Because the heat transport along magnetic field lines is much more rapid than 
heat transport across field lines, any heat flux that reaches the open field lines is able to 
quickly equilibrate and reach the plasma boundary. The localization of the normal heat 
flux on the divertor is a consequence of the localization of the perpendicular heat flux 
within the core plasma. As can be seen by the isosurfaces of heat flux, the most important 
localization is that which occurs near the transition between the open and closed field 
lines.  The heat flux that is localized in the core plasma remains relatively well confined 
even though the field is stochastic.  An examination of the red field line shows that it is 
related to the heat flux isosurfaces in the interior, and possibly contributes to the 
appearance of the outer hot spot.. 
 
The contour plots of the normal heat flux on the top and bottom divertors in Fig. 11 also 
show the movement of the original divertor strike points.  The brightest spots indicate the 
location of the original strike points.  Moving 180 degrees away from this spot shows a 
bifurcation in the heat flux impinging the wall.  The distance between the two peaks is 5 
cm.  A comparison of Fig. 10 and Fig. 11 indicates that this bifurcated structure appeared 
early in the plasma discharge.  The n=1 dominance of this bifurcation is due to the initial 
n=1 perturbation driving the edge boundary distortion as the edge goes stochastic.  The 
implication is that higher n perturbations (such as ELMs) would presumably give even 
more toroidal, and hence poloidal, variation. 
 
 
V. Conclusions and Future Work  
 
Despite the heuristic nature of the analytic derivation of mode growth being driven 
through an ideal marginal instability point, the NIMROD simulations show that the 
analytic scaling given by Eq. (8) gives an excellent description of the mode growth even 
into the nonlinear regime. For ideal modes, where the mode amplitudes can grow quite 
large with a change in magnetic topology, the fundamental assumptions of the analytic 
theory holds into the nonlinear regime. The simulations emphasize the point of the 
importance of simulating not only the instability, but also the mechanism by which the 
plasma has evolved to that state. Unfortunately, simulations near the marginality point are 
the most difficult to simulate because of the slowness of the mode growth. Exploring the 
role of resistive instabilities, which are unstable below the ideal marginal stability point, 



can influence the evolution of the discharge to the unstable state is an open question, 
especially instabilities which can dramatically change the transport such as tearing 
modes. Investigating this question by beginning these simulations at a lower beta and 
heating for a longer period of time will be studied in future work.  
 
The free boundary simulations that explored the realistic DIII-D geometry and heat flux 
deposition agrees qualitatively with many features of the thermal quench phase of plasma 
disruptions. The macroscopic loss of energy confinement time of 200 microseconds is in 
qualitative agreement with experiment, as is the concomitant rise in the plasma current 
due to the change in internal inductance. The edge went stochastic first, as would be 
expected given the X-points and the closeness of the rational surfaces in that region.   
Because of the peaked, L-mode pressure profile, little of the stored energy was lost in the 
early phase of the disruption.  Future work will include the extension of these simulation 
diagnostic techniques for studying heat transport to ELM simulations where significant 
stored energy is located near the separatrix. 
 
The localization of the heat flux, both toroidally and poloidally has been observed in 
divertor temperature measurements in similar experiments.   The heat flux localization 
arises because the original mode distorts the plasma surfaces and localizes the 
perpendicular heat flux.  As the heat flux increases near the boundary between open and 
closed field lines, the parallel heat conduction rapidly carries it to the wall.  Although the 
use of a Braginskii model with constant coefficients is a relatively crude model for 
equilibration of temperature along field lines and probably exaggerates the importance of 
the open-closed boundary, avoiding the complications of temperature-dependent 
coefficients is useful for gaining a qualitative understanding of the overall dynamics of 
heat transport in a complicated magnetic topology. Future work will include more 
accurate modeling of the heat flux, including temperature-dependent Braginskii 
coefficients, use of Landau-fluid closures, [24,25] and a kinetic calculation of heat flux, 
[26,27].  
 
Much of the success of the modeling this discharge is due to the peaked, L-mode pressure 
profile of the equilibrium studied.  Because the pressure gradient was peaked inside the 
plasma, the resultant mode was largely internal and resulted in little movement of the 
plasma boundary. Complicated plasma-wall interactions were not required for the 
obtained agreement.  Also, because the time-scale of the ideal mode growth is rapid 
compared to the time-scale of impurity penetration, the need for impurity modeling is 
unnecessary. For disruptions caused by resistive wall modes [9] where mode growth is 
both slow and primarily external, for disruption mitigation experiments where impurities 
are injected into the plasma[10], or for density limit disruptions [11], modeling of 
impurities in the NIMROD code would be necessary.  Current work is underway to 
include these effects. 
 
Future simulations will try to drive the free-boundary simulations through the stability 
point in the same way the fixed-boundary equilibria were driven. By more accurately 
modeling the time-dependence, the heat flux closure, and more realistic diffusivity 
parameters, direct quantitative comparisons of simulation results to experimental 



diagnostics can be made.  By improving our understanding of disruptions, intuition can 
be gained to guide the experiments, and allow the use of numerical experiments to 
explore how factors such as external magnetic configuration can be used to mitigate the 
damage caused by major disruptions.  
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FIG. 1: Equilibrium reconstruction of DIII-D discharge 87009 at 1675msec shows a reverse shear 
profile and peaked pressure profile in a highly triangulated plasma. The plasma region contains a 
hot region where the field lines are closed and a cold, halo plasma where the field lines strike the 
wall.  
 
 



 
 

 
FIG. 2: Linear NIMROD runs used in conjunction with DCON determine the marginal stability 
point with pressure that is larger than the experiment. Nonlinear NIMROD runs started with an 
equilibrium at  βN = 4.70 



 

 
FIG. 3: The n = 1 perturbation grows faster than exponential as predicted by analytic theory. 



 

 
FIG. 4: Plotting the log of the magnetic energy, Em, versus the the normalized time raised to 3/2 
power shows excellent agreement with the analytically-predicted scaling behavior as evidenced 
by the straight lines. 



 
 
 

 

FIG. 5:  The 2/1 (right) and 3/1 (left) harmonics of Bn have zero components at their resonants 
surfaces indicating no change of topology. 
 



 

 
 

FIG. 6: The plasma loses two thirds of its internal energy in 200 microseconds in qualitative 
agreement with experiment. As the plasma expands, the internal inductance changes causing the 
current to increase. 



 
 

 
FIG. 7: The axisymmetric starting point for the three-dimensional simulations shows the 
temperature isosurfaces, two magnetic field lines, and the heat flux on the divertor, which at this 
point in time is negligible.  
 



 

 
FIG. 8: At t = 464 µs, multiple islands can be observed in the Poincare surface of section (left) 
and the edge region is largely stochastic.   The temperature isosrufaces (right) only show the 
inner 2/1 magnetic island.  
 
 
 
 



 
FIG. 9: At t-t0 = 546 µsec, the core region is largely stochastic although the field lines are 
confined.  The heat flux is rising on the limiter although it is not at its maximum value. 



 
FIG. 10: The heat flux being deposited on the upper and lower divertors is localized both 
toroidally and poloidally.   At this time, the heat flux loading on the wall is maximum, and the 
field is completely stochastic in the core. 
 



 
 
FIG. 11.  Isosurfaces of the magnitude of perpendicular heat flux is plotted to show 
where the perpendicular heat flux is flowing across the temperature isosurfaces.  The 
fieldlines shown in Fig. 12 are started near the outer isosurfaces as shown by the inset. 



 

 
 
FIG. 12.  Field lines started near the open-closed boundary show differences near the heat 
flux isosurface show contributions to the peak heat flux loading on the wall. The field 
lines are colored by their total length with the red field line being completely confined 
and the blue field lines striking the top (shown in the lower left) and bottom (shown in 
bottom right) divertors.    


